
Coupled double-distribution-function lattice Boltzmann method for the compressible
Navier-Stokes equations

Q. Li, Y. L. He,* Y. Wang, and W. Q. Tao
State Key Laboratory of Multiphase Flow, School of Energy and Power Engineering, Xi’an Jiaotong University,

Xi’an, Shaanxi 710049, China
�Received 15 July 2007; revised manuscript received 10 September 2007; published 16 November 2007�

A coupled double-distribution-function lattice Boltzmann method is developed for the compressible Navier-
Stokes equations. Different from existing thermal lattice Boltzmann methods, this method can recover the
compressible Navier-Stokes equations with a flexible specific-heat ratio and Prandtl number. In the method, a
density distribution function based on a multispeed lattice is used to recover the compressible continuity and
momentum equations, while the compressible energy equation is recovered by an energy distribution function.
The energy distribution function is then coupled to the density distribution function via the thermal equation of
state. In order to obtain an adjustable specific-heat ratio, a constant related to the specific-heat ratio is intro-
duced into the equilibrium energy distribution function. Two different coupled double-distribution-function
lattice Boltzmann models are also proposed in the paper. Numerical simulations are performed for the Riemann
problem, the double-Mach-reflection problem, and the Couette flow with a range of specific-heat ratios and
Prandtl numbers. The numerical results are found to be in excellent agreement with analytical and/or other
solutions.
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I. INTRODUCTION

In the past two decades or so, the lattice Boltzmann
method �LBM� has been developed into an alternative nu-
merical method to simulate fluid flows and model physics in
fluids �1–3�. Unlike the conventional numerical methods,
which are based on discretization of macroscopic governing
equations, and unlike the molecular dynamics method, which
is based on molecular representation with complicated mol-
ecule collision rules, the LBM is based on microscopic mod-
els and mesoscopic kinetic equations for particle distribution
functions; it simulates fluid flows by tracking the evolutions
of the distribution functions and then accumulates the distri-
butions to obtain macroscopic averaged properties. An at-
tractive feature of the LBM is its handling of complicated
geometries such as porous media flow where wall boundaries
are extremely irregular. Other merits of the LBM are the
localization and easy implementation of its computational
scheme, and the LBM computations tend to be easily paral-
lelized.

Although the LBM has achieved great success in simulat-
ing nearly incompressible and isothermal fluid flows, it has
not been able to handle realistic thermal compressible flows
with enough satisfaction. As reported in Ref. �4�, the current
thermal lattice Boltzmann models can be generally classified
into three categories. The first category is the passive-scalar
approach �5,6�. It utilizes the fact that the macroscopic tem-
perature satisfies the same evolution equation as a passive
scalar if the viscous heat dissipation and the compression
work done by the pressure can be neglected. In this case, the
temperature is advected by the flow velocity but does not
affect the flow field. Then the temperature field is simulated
by a new scalar density distribution function.

The second category includes several energy-conserving
approaches, such as the multispeed approach �7–12�, the hy-
brid approach �4,13�, and the double-distribution-function
�DDF� approach �14–18�. The multispeed approach is a
straightforward extension of the common isothermal lattice
Boltzmann models in which only the density distribution
function is used. To obtain the energy equation at the mac-
roscopic level, additional particle speeds are necessary and
the equilibrium distribution functions must include higher-
order velocity terms. The multispeed models usually suffer
severe numerical instability and a narrow range of tempera-
ture variation. Moreover, the Prandtl number is usually fixed
at constant and the specific-heat ratio cannot be chosen
freely. Although these two problems have been solved re-
spectively by some later models �10,11�, these models are
more complicated �compared with previous multispeed mod-
els� and the model which can simultaneously solves the two
problems has seemingly not been found yet. In the hybrid
approach, the flow simulation is decoupled from the solution
of the temperature equation. Specially, the flow simulation is
accomplished by the LBM, while the temperature field is
solved by conventional numerical methods, such as the
finite-difference method.

The first DDF model was devised by He et al. �14�; this
model is based on the principle that the isothermal lattice
Boltzmann models can be directly derived by properly dis-
cretizing the continuous Boltzmann equation in temporal,
spatial, and the particle velocity spaces. Following the same
procedure, an internal energy distribution function model can
be derived by discretizing the continuous evolution equation
for the internal energy distribution, and then two different
distributions are obtained, one for the flow field and the other
for the temperature flied. This model has attracted much at-
tention since its emergence for its excellent numerical stabil-
ity and adjustability of the Prandtl number. However, this
model includes complicated gradient terms involving tempo-*Corresponding author. yalinghe@mail.xjtu.edu.cn
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ral and spatial derivatives of the macroscopic flow variables,
which may introduce some additional errors and do harm to
the numerical stability. Several improved models have been
proposed to overcome these drawbacks �16,17�. Unfortu-
nately, complicated gradient terms will still exist if the vis-
cous heat dissipation and the compression work are taken
into account. Recently, Guo et al. �18� proposed another ver-
sion by introducing a total energy distribution function to
replace the internal energy distribution function. Such a
choice not only enables the thermal lattice Boltzmann mod-
els to be simple but also makes the inclusion of compression
work and viscous heat dissipation to be easier. Nevertheless,
the model devised in Ref. �18� is a decoupling model in
which the energy equation is decoupled from the momentum
equation. In other words, the temperature field does not af-
fect the flow field. Then the pressure and velocity fields can
be established without referring to the energy equation.

The last category includes various shock-capturing
schemes based on the LBM to treat fully compressible Euler
�19–22� or Navier-Stokes �NS� equations �23–28�. Among
these models, a locally adaptive lattice Boltzmann model
was devised by Sun and Hsu �24–28�. In this model, the
lattice velocities are chosen according to the local flow ve-
locity and internal energy, and then the fluid velocity is no
longer limited by the lattice velocities. So it permits the
mean flow to have high Mach number. Although the
streaming-collision procedure is still used in this model, the
particles are no longer simply hopping from one grid point to
the next, because the advection step is adopted to the local
flow velocity in order to allow large speeds. Therefore, a
reconstruction step is necessary to obtain the values on the
grid nodes and interpolations have to be used, which will
introduce undesirable numerical artifacts �4�. Moreover, the
relaxation time � is fixed at 1 and the Prandtl number is equal
to the specific-heat ratio, which may limit its application.
Recently, Qu et al. �22� proposed an alternative lattice Bolt-
zmann method to construct equilibrium distribution func-
tions for inviscid compressible flows at high Mach number,
and the conventional Maxwellian distribution function is re-
placed by a circular function in this method. However, one of
the constraints to recover the macroscopic equations is not
completely satisfied, which may cause some problems when
the method is directly extended for the viscous compressible
flows, and the Prandtl number is also equal to the specific-
heat ratio in this method.

Despite many brilliant attempts, to date, there is still lack
of a lattice Boltzmann model which can make both the
specific-heat ratio and the Prandtl number arbitrary for the
compressible NS equations. Among the approaches and
models mentioned above, we especially appreciate the nu-
merical stability and the adjustability of the Prandtl number
in the DDF approach. And we also note that the multispeed
approach can recover the compressible momentum and en-
ergy equations with appropriate discrete velocities. In addi-
tion, much research has showed that discontinuity-capturing
schemes should be used to solve the differential form of the
lattice Boltzmann equation in order to capture discontinuities
in the compressible flows. On the basis of the above consid-
erations, we aim to propose a lattice Boltzmann method for
the compressible NS equations with a flexible specific-heat

ratio and Prandtl number by combining the DDF approach
with the multispeed approach. In the method, a density dis-
tribution function based on a multispeed lattice is used to
recover the compressible continuity and momentum equa-
tions, while the energy equation is recovered by an energy
distribution function and its evolution equation. The two dis-
tribution functions can be coupled together by using the ther-
mal equation of state. For the purpose of obtaining an adjust-
able specific-heat ratio, a constant related to the specific-heat
ratio will appear in the equilibrium energy distribution func-
tion. Furthermore, in order to improve the numerical accu-
racy and stability, an implicit-explicit �IMEX� finite-
difference numerical technique �29–31�, is introduced to
solve the Boltzmann equations in the coupled DDF method.

The rest of this paper is organized as follows. In Sec. II, a
coupled DDF lattice Boltzmann method with a flexible
specific-heat ratio and Prandtl number is described. In par-
ticular, two different coupled DDF models are constructed
there. In Sec. III, the implicit-explicit finite-difference nu-
merical technique is introduced. In Sec. IV, numerical tests
of the coupled DDF models are performed for the Riemann
problem, the double-Mach-reflection problem, and the Cou-
ette flow. Finally, a brief conclusion is given in Sec. V.

II. COUPLED DOUBLE-DISTRIBUTION-FUNCTION
LATTICE BOLTZMANN METHOD

A. Density distribution function for the compressible
continuity and momentum equations

In this subsection, a density distribution function to re-
cover the compressible continuity and momentum equations
will be derived. It is different from the density distribution
functions which are employed to recover all the macroscopic
equations in the multispeed approach and also different from
those used in the previous DDF models which cannot re-
cover the compressible momentum equation correctly. We
start with the following discrete Boltzmann Bhatnagar-
Gross-Krook �BGK� �33,34� equation:

�f�

�t
+ �e� · ��f� = −

1

� f
�f� − f�

eq� �� = 1,2, . . . ,N � ,

�1�

where f��t ,r ,e�� is the density distribution function �in the
equation we drop the dependence on �t ,r ,e�� for simplicity�
and f�

eq is its corresponding equilibrium distribution function.
The symbol t is the time, r is the particle position, e� is the
discrete particle velocity along the �th direction, N is the
total number of discrete velocity directions, �=� /�r is the
Hamiltonian operator, and � f is the relaxation time for the
momentum transport. The macroscopic quantities—density �
and velocity u—are defined as

� = �
�

f�, �2a�

�u = �
�

f�e�. �2b�
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The equilibrium density distribution function should sat-
isfy the following velocity moment condition to recover the
compressible continuity and momentum equations:

�
�

f�
eq = � , �3a�

�
�

f�
eqe�i = �ui, �3b�

�
�

f�
eqe�ie�j = �uiuj + p�ij , �3c�

�
�

f�
eqe�ie�je�k = �uiujuk + p�uk�ij + uj�ik + ui� jk� , �3d�

�
�

f�
eqe�

2 = �u2 + Dp , �3e�

�
�

f�
eqe�

2e�i = ��u2 + �D + 2�p�ui, �3f�

where p is the pressure and D is the dimension of the space
and the subscripts i, j, and k indicate the x, y, or z compo-
nent. e�

2 =e� ·e�, and �ij, �ik, and � jk are the Kronecker delta
functions.

The compressible continuity and momentum equations
can be derived through the Chapman-Enskog expansion. By
introducing the multiscale expansions, we expand the space
derivative, the time derivative, and the density distribution
function, respectively, as

� = K�1, �4a�

�

�t
= K

�

�t1
+ K2 �

�t2
+ ¯ , �4b�

f� = f�
eq + Kf�

�1� + K2f�
�2� + ¯ , �4c�

where K is a small parameter proportional to the Knudsen
number. Combining Eqs. �2a�, �2b�, �3a�, and �3b�, we can
obtain

�
�

f�
�n� = 0, �

�

f�
�n�e� = 0, n = 1,2, . . . . �5�

If we assume that the pressure is defined as

p =
1

D��
�

f�e�
2 − �u2� , �6�

then the following equation can be obtained by combining
Eq. �3e� with Eq. �6�:

�
�

f�
�n�e�

2 = 0. �7�

Substituting Eqs. �4a�–�4c� into Eq. �1�, we can obtain the
equations for the first- and second-order expansions in K,
respectively:

� �

�t1
+ e� · �1� f�

eq +
1

� f
f�

�1� = 0, �8�

�f�
eq

�t2
+ � �

�t1
+ e� · �1� f�

�1� +
1

� f
f�

�2� = 0. �9�

Taking the zeroth- and first-moment summations of Eq. �8�,
we have

��

�t1
+ �1 · ��u� = 0, �10�

�

�t1
��uj� +

�

�r1i
��uiuj� = −

�p

�r1j
. �11�

Similarly, taking the summations of Eq. �9�, we can obtain
the following equations on the t2=K2t time scale:

��

�t2
= 0, �12�

�

�t2
��uj� +

�

�r1i
��

�

e�ie�j f�
�1�� = 0. �13�

With the aid of Eq. �8�, ��e�ie�j f�
�1� can be written as

�
�

e�ie�j f�
�1� = − � f� �

�t1
��

�

e�ie�j f�
eq�

+
�

�r1k
��

�

e�ie�je�kf�
eq�	 . �14�

Combining Eq. �10� with Eq. �11�, after some standard alge-
bra, we can obtain

���uiuj�
�t1

= − ui
�p

�r1j
− uj

�p

�r1i
−

�

�r1k
��uiujuk� . �15�

Multiplying Eq. �8� by e�
2 and summing gives

�

�t1
��u2 + Dp� +

�

�r1i
��u2ui + �D + 2�pui� = 0. �16�

Combining Eq. �16� with Eq. �11�, we can obtain

�p

�t1
= −

�

�r1k
�puk� −

2

D
p

�uk

�r1k
. �17�

FIG. 1. Discrete velocities of the D2Q12 model.
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With these results, and using Eqs. �3c� and �3d�, we can
simplify Eq. �14� as

�
�

e�ie�j f�
�1� = − � fp� �ui

�r1j
+

�uj

�r1i
−

2

D

�uk

�r1k
�ij� . �18�

Adding Eq. �10� and K times Eq. �12� yields the continuity
equation

��

�t
+ � · ��u� = 0. �19�

Finally, combining Eqs. �11�, �13�, and �18�, we can obtain
the compressible momentum equation

���u�
�t

+ � · ��uu� = − �p + � · � . �20�

The viscous stress tensor � is given by

� = ���u + ��u�T −
2

D
�� · u�I	 , �21�

where �=� fp is the dynamic viscosity and I is the unit ten-
sor.

It should be noted that the density distribution function
which satisfies Eq. �3� can construct a self-governed lattice
Boltzmann model for the compressible continuity and mo-
mentum equations, and the pressure is given by Eq. �6�.

However, in this work, the density distribution function will
be used to construct coupled DDF model and the pressure
will not be calculated by Eq. �6�.

For the D2Q9 model, which is often used in previous
DDF models, the pressure p is dependent on the density �
and calculated by p���=�c2 /3 �c is a constant�. Conse-
quently, there is no way to couple the two different distribu-
tion functions in these DDF models. Moreover, from Eq.
�10�, the following equation can be obtain:

�p���
�t1

= −
�

�r1k
�p���uk� . �22�

In addition, Eq. �3d� cannot be completely satisfied be-
cause the sixth-rank lattice tensor of the nine-velocity-square
lattice is anisotropic. Finally, the momentum equation is
given by

���u�
�t

+ � · ��uu� = − �p + � · 
���u + ��u�T�

− � f � · ��uuu�� . �23�

Accordingly, additional particle velocities must be used in
order to recover the compressible momentum equation cor-
rectly. In this study, a 2-dimensional �2D� 12-velocity
�D2Q12� square lattice �see Fig. 1�, which can ensure the
6th-rank lattice tensor isotropic, is adopted and defined as

e� = �c̃
cos��� − 1��/2�,sin��� − 1��/2�� , � = 1,2,3,4,

2c̃
cos��2� − 1��/2�,sin��2� − 1��/2�� , � = 5,6,7,8,

2c̃
cos��� − 9��/2�,sin��� − 9��/2�� , � = 9,10,11,12,
� �24�

where c̃=RTc �Tc is the characteristic temperature� is the
characteristic speed of the lattice fluid. On the other hand, it
is well known that, for compressible flows, the continuity
equation is taken as the transport equation for the density and
the energy equation is the transport equation for the tempera-
ture. The pressure is obtained from the density and tempera-
ture by using the thermal equation of state, p= p�� ,T�, so we
can naturally use the thermal equation of state to couple the
two different distribution functions in the DDF models. De-
tails about constructing coupled DDF models will be shown
in the next subsection.

B. Energy distribution functions and coupled DDF models

The first method to construct DDF lattice Boltzmann
models was proposed by He et al. �14�. This method intro-
duces an internal energy distribution function g, which is
defined as

g =
�� − u�2

2
f , �25�

where � is the particle velocity. The evolution equations for
the continuous density and internal energy distribution func-
tions are given by

�f

�t
+ �� · ��f = −

1

� f
�f − feq� , �26a�

�g

�t
+ �� · ��g = −

1

�g
�g − geq� − fq , �26b�

where feq is the Maxwellian equilibrium distribution func-
tion, geq= ��−u�2feq /2 is the equilibrium internal energy dis-
tribution function, �g is the relaxation time for the internal
energy, and q is given by

q = �� − u� · � �u

�t
+ �� · ��u	 . �27�
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Note that Eq. �26b� is derived based on the definition of
the internal energy distribution function given by Eq. �25�.
Then the internal energy 	 is defined as 	=�gd�=DRT /2
�R is the specific gas constant�, which implies that the mac-
roscopic internal energy only includes the translational ki-
netic energy. This may be true for monatomic molecules, but
polyatomic molecules also possess internal energy associated
with the rotational and/or vibrational energy modes. Thus it
is necessary to redefine the internal energy distribution func-
tion in order to extend the DDF method for polyatomic mol-
ecules.

As reported in Refs. �35,18�, for polyatomic molecules,
the continuous-density distribution function can be expressed

by f̃ = f̃�r ,� ,� , t�, where � is a vector containing K̃ compo-
nents corresponding to the internal freedom. And the equi-

librium density distribution function is given by

f̃ eq =
�

2�2�RT��D+K̃�/2
exp�−

�� − u�2 + �2

2RT
	 . �28�

Here we introduce a constant b, which is related to the
specific-heat ratio 
 by 
= �b+2� /b, and specify that

�D+ K̃� is equal to b. For the polyatomic molecules, the in-
ternal energy distribution function and its equilibrium distri-
bution can be defined as

g̃ =
�� − u�2 + �2

2
f̃ , g̃eq =

�� − u�2 + �2

2
f̃ eq. �29�

Since the macroscopic quantities are given by

� =� � f̃d�d�, �u =� � � f̃d�d� , �
b

2
RT =� � g̃d�d� , �30�

it is natural to define f̄ =� f̃d� and ḡ=�g̃d�, and then the
following equations can be obtained:

� f̄

�t
+ �� · �� f̄ = −

1

� f
� f̄ − f̄ eq� , �31a�

�ḡ

�t
+ �� · ��ḡ = −

1

�g
�ḡ − ḡeq� − f̄q , �31b�

where

f̄ eq =� f̃ eqd� =
�

2�2�RT�D/2 exp�−
�� − u�2

2RT
	 = feq,

�32a�

ḡeq =� g̃eqd� =
���� − u�2 + �b − D�RT�

2�2�RT�D/2 exp�−
�� − u�2

2RT
	 .

�32b�

Note that �−�
+� exp�−�x2�dx=� /� and �−�

+�x2 exp�−�x2�dx
=� /�3 /2 are used in the derivations. With the above re-
sults, we know that Eqs. �26a� and �26b� are also valid for
polyatomic molecules as long as the equilibrium distribution
functions are chosen appropriately. After some standard al-
gebra, the following equations can be obtained:

� ḡeqd� = �
b

2
RT , �33a�

� ḡeqid� = �
b

2
RTui, �33b�

� ḡeqi jd� = �
b

2
RTuiuj + p

b + 2

2
RT�ij . �33c�

When the velocity space � is discretized into a finite set of
velocities 
e��, the evolution equation for the discrete inter-
nal energy distribution function g� is given by

�g�

�t
+ �e� · ��g� = −

1

�g
�g� − g�

eq� − f�q�, �34�

where g�
eq is the discrete equilibrium internal energy distri-

bution function, which should satisfy the following equations
according to Eqs. �33�:

�
�

g�
eq = �

b

2
RT , �35a�

�
�

e�ig�
eq = �

b

2
RTui, �35b�

�
�

e�ie�jg�
eq = �

b

2
RTuiuj + p

b + 2

2
RT�ij . �35c�

Through the Chapman-Enskog expansion, we can obtain
the macroscopic conservation equation of the internal energy
with a flexible specific-heat ratio �see Appendix A for
details�

�

�t
��cvT� + � · ��cvTu� = � · �� � T� + ��:�u − p � · u ,

�36�

where cv=bR /2 is the specific heat at constant volume and
�=�g�cv+R�p is the thermal conductivity. The pressure is
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calculated by the thermal equation of state, such as p=�RT
for an ideal gas. At this point, it should be noted that Eq. �7�
together with Eq. �16� is invalid because the pressure is not
defined by Eq. �6�. This change affects the form of the vis-
cous stress tensor, which now is given by

�� = ���u + ��u�T −
2

D
�� · u�I	 + �B�� · u�I , �37�

where �B=2�1/D−1/b�� fp is the bulk viscosity.
Recently, Guo et al. �18� proposed another method to con-

struct DDF models by introducing a total energy distribution
function h=�2f /2, and its evolution equation is given as fol-
lows:

�h

�t
+ �� · ��h = −

1

�h
�h − heq� +

1

�hf
�� · u −

u2

2
��f − feq� ,

�38�

where heq is the equilibrium total energy distribution func-
tion, �h is the total energy relaxation time, and �hf
=�h� f / �� f −�h�.

Similarly, although Eq. �38� is derived based on h
=�2f /2, this method can also be extended for polyatomic
molecules with the corresponding equilibrium total energy
distribution function given by

heq =
���2 + �b − D�RT�

2�2�RT�D/2 exp�−
�� − u�2

2RT
	 . �39�

Up to now, we have shown that both methods can be
extended to construct DDF models for the compressible NS
equations with arbitrary specific-heat ratio �adjusted by the
constant b� by selecting appropriate forms of equilibrium
distribution functions. Considering the simplicity of the latter
method, we adopt the total energy distribution function for
numerical simulations in this study, and the following evolu-
tion equation is presented:

�h�

�t
+ �e� · ��h� = −

1

�h
�h� − h�

eq� +
1

�hf
�e� · u��f� − f�

eq� .

�40�

The simplification from �e� ·u−u2 /2� to �e� ·u� does not af-
fect the form of the compressible energy equation at the
Naiver-Stokes level, which can be seen clearly in Appendix
B.

The equilibrium total energy distribution should satisfy
the following velocity moment condition:

�
�

h�
eq = �E , �41a�

�
�

e�ih�
eq = ��E + p�ui, �41b�

�
�

e�ie�jh�
eq = ��E + 2p�uiuj + p�E + RT��ij , �41c�

where E=bRT /2+u2 /2 is the total energy. Then the tempera-
ture is calculated by

T =
2

bR���

h� −
u2

2 � . �42�

Through the Chapman-Enskog expansion, we can obtain
the compressible energy equation �see Appendix B for
details�

�

�t
��E� + � · ���E + p�u� = � · �� � T� + � · �u · ��� ,

�43�

where �=�h�cv+R�p. The viscous stress tensor �� is given
by Eq. �37�, and the momentum equation is given as follows:

���u�
�t

+ � · ��uu� = − �p + � · ��. �44�

The Prandtl number of the system, Pr=�cp /�=� f /�h, can
be made arbitrary by adjusting the two relaxation times.

In the following, we will specify the detailed forms of the
equilibrium distribution functions. Taking the equilibrium
density distribution function as an example, it can be deter-
mined by several methods. The first method, which is the
conventional method, is based on the discrete Maxwellian
equilibrium distribution function

f�
eq =

�

�2�RT�D/2 exp�−
�e� − u�2

2RT
� . �45�

Owing to the finite number of discrete velocities, Eq. �45�
cannot fulfill the conservation laws and the constraints to
recover the macroscopic equations. Thus, the truncated Max-
wellian equilibrium distribution with an expansion in powers
of local velocity u is used to replace Eq. �45�. This method is
widely used in the current LBM community for it is easy to
be accepted and implemented. Its disadvantage is that it is
limited to low- and moderate-Mach-number flows. The sec-
ond method has nothing to do with the Maxwellian equilib-
rium distribution. In this method, the equilibrium distribution
function can be a Kronecker � function �24–28� or a circular
function �22�, and the former, as pointed out in Ref. �4�, is in
fact related to the beam scheme. The connections and differ-
ences between the LBM and the beam scheme can be found
in Ref. �36�. The main advantage of the second method is
that it can be used to simulate high-Mach-number flows.

In this study, we will apply the above two methods to
design coupled DDF models. First, the conventional method
is used. Note that f�

eq should be expanded up to u3 to satisfy
Eq. �3�, while h�

eq can only be expanded up to u2. We thus
define

f�
eq = A� + B��e� · u� + C�u2 + D��e� · u�2 + G��e� · u�u2

+ H��e� · u�3, �46�

h�
eq = K� + L��e� · u� + M�u2 + N��e� · u�2. �47�

The coefficients A� , . . . ,H� ,K� , . . . ,N� can be obtained by
solving the corresponding constraints. As some of these con-
straints are underconditioned, the solutions are somewhat ar-
bitrary. For the D2Q12 square lattice, one possible solution
for f�

eq and h�
eq is given as follows:
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f1,2,3,4
eq = �� 1

12
�5 −

4p

�c̃2� + �2 −
3p

�c̃2� �e� · u�
3c̃2 −

u2

6c̃2

+
�e� · u�2

6c̃4 −
�e� · u�u2

2c̃4 +
�e� · u�3

3c̃6 	 ,

f5,6,7,8
eq = ��1

8
� 2p

�c̃2 − 1� +
p

�c̃2

�e� · u�
4c̃2 −

u2

8c̃2 +
�e� · u�2

8c̃4

−
�e� · u�u2

8c̃4 +
�e� · u�3

8c̃6
	 ,

f9,10,11,12
eq = �� 1

24
� 2p

�c̃2 − 1� + � 3p

�c̃2 − 1� �e� · u�
24c̃2 +

u2

24c̃2

+
�e� · u�2

48c̃4 +
�e� · u�3

96c̃6 	 , �48�

h1,2,3,4
eq =

5�E

12
−

p

3c̃2 �E + RT� +
1

6���E + p�
�e� · u�

c̃2

+ ��E + 2p�� �e� · u�2

c̃4 −
u2

c̃2	� ,

h5,6,7,8
eq = −

�E

8
+

p

4c̃2 �E + RT� +
1

8���E + p�
�e� · u�

c̃2

+ ��E + 2p�� �e� · u�2

c̃4 −
u2

c̃2	� ,

h9,10,11,12
eq = −

�E

24
+

p

12c̃2 �E + RT� +
1

48���E + p�
�e� · u�

c̃2

+ ��E + 2p�� �e� · u�2

c̃4 + 2
u2

c̃2	� . �49�

As can be seen in Eq. �48�, unlike decoupling DDF mod-
els, the pressure term p= p�� ,T� serves as an independent
variable appearing in the equilibrium density distribution
function. This means that the equilibrium density distribution
function depends on the local temperature �T=2���h�

−u2 /2� /bR� and provides an implicit coupling between the
density distribution function and the total energy distribution
function. Thus, the two distribution functions are coupled
together by using the thermal equation of state. In addition,
from Eq. �49� it can be found that the constant b is intro-
duced to adjust the specific-heat ratio with E= �bRT+u2� /2.
Compared with the multispeed thermal models based on a
single distribution function, although the present model has
an obvious weak point that the computational time needed
will be increased because two distribution functions are used,
it has an advantage of simplicity and can easily handle arbi-
trary values of the specific-heat ratio and Prandtl number. In
the following, we will use model I to represent Eqs. �1�, �40�,
�48�, and �49�.

As we have mentioned before, the truncated Maxwellian
equilibrium distribution function is limited to low- and
moderate-Mach-number flows, which has been validated by

much research �8–11�. This limitation mainly results from
the Taylor series expansion in terms of the Mach number.
Another reason may be that the equilibrium distribution
functions determined by this approach contain many free pa-
rameters �9,11�. To get satisfied simulation results at high
Mach number, these parameters should be tuned carefully.
Unfortunately, how to tune these parameters is not clear.
Most recently, Qu et al. �22� proposed a lattice Boltzmann
model for the compressible Euler equations at high Mach
number. In this model, a circular function is introduced to
replace the Maxwellian equilibrium distribution function,
and the circular function is then distributed to the lattice
velocity directions by Lagrangian interpolation. An impor-
tant feature of this model is that it has no free parameters.
Therefore, in this study, we adopt the circular function for
high-Mach-number flows. However, much work should be
done to construct a coupled DDF model for the compressible
Navier-Stokes at high Mach number. This is because the
model and the equilibrium density distribution function in
Ref. �22� are both designed for the compressible Euler equa-
tions and the Prandtl number is equal to the specific-heat
ratio in their method.

First, we discard the energy level method used in Ref.
�22�, and the equilibrium density distribution function is then
defined as

f�
eq = ��, �50�

where �=0,1 ,2 , . . . ,12 because the D2Q13 square lattice
�one more velocity with modulus 0 compared with the
D2Q12 square lattice� was used in Ref. �22�. The equilibrium
density distribution function of the Euler model devised by
Qu et al. was given in the Appendix of Ref. �22�. Neverthe-
less, some changes should be made for the expression before
it is introduced as the equilibrium density distribution func-
tion of our coupled DDF model. The variable c used there
should be replaced by 2p /�c̃2; moreover, u and v �corre-
sponding to ux and uy in this paper� are made dimensionless
through dividing by c̃, while � is dimensional. Then the equi-
librium density distribution function is given by

�0 = �/4�ūx
4 + 5p̄2 − 10p̄ + 4 + 4ūx

2ūy
2 + ūy

4

+ �10p̄ − 5��ūx
2 + ūy

2�� ,

�1 = − �/6�− 4ūx
2 + 3p̄2 + ūx

4 − 4p̄ + 3p̄ūy
2 + 3ūxūy

2 + 9p̄ūx
2

+ 6p̄ūx + 3ūx
2ūy

2 − 4ūx + ūx
3� ,

�2 = − �/6�− 4ūy
2 + 3p̄2 + ūy

4 − 4p̄ + 3p̄ūx
2 + 3ūx

2ūy + 9p̄ūy
2

+ 6p̄ūy + 3ūx
2ūy

2 − 4ūy + ūy
3� ,

�3 = − �/6�− 4ūx
2 + 3p̄2 + ūx

4 − 4p̄ + 3p̄ūy
2 − 3ūxūy

2 + 9p̄ūx
2

− 6p̄ūx + 3ūx
2ūy

2 + 4ūx − ūx
3� ,

�4 = − �/6�− 4ūy
2 + 3p̄2 + ūy

4 − 4p̄ + 3p̄ūx
2 − 3ūx

2ūy + 9p̄ūy
2

− 6p̄ūy + 3ūx
2ūy

2 + 4ūy − ūy
3� ,
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�5 = �/8�ūxūy
2 + ūxūy + p̄ūx + p̄ūy + ūx

2ūy + 0.5p̄2 + ūx
2ūy

2 + p̄ūx
2

+ p̄ūy
2� ,

�6 = �/8�− ūxūy
2 − ūxūy − p̄ūx + p̄ūy + ūx

2ūy + 0.5p̄2 + ūx
2ūy

2

+ p̄ūx
2 + p̄ūy

2� ,

�7 = �/8�− ūxūy
2 + ūxūy − p̄ūx − p̄ūy − ūx

2ūy + 0.5p̄2 + ūx
2ūy

2

+ p̄ūx
2 + p̄ūy

2� ,

�8 = �/8�ūxūy
2 − ūxūy + p̄ūx − p̄ūy − ūx

2ūy + 0.5p̄2 + ūx
2ūy

2 + p̄ūx
2

+ p̄ūy
2� ,

�9 = �/24�− 2ūx + ūx
4 − p̄ − ūx

2 + 6p̄ūx
2 + 1.5p̄2 + 2ūx

3 + 6p̄ūx� ,

�10 = �/24�− 2ūy + ūy
4 − p̄ − ūy

2 + 6p̄ūy
2 + 1.5p̄2 + 2ūy

3 + 6p̄ūy� ,

�11 = �/24�2ūx + ūx
4 − p̄ − ūx

2 + 6p̄ūx
2 + 1.5p̄2 − 2ūx

3 − 6p̄ūx� ,

�12 = �/24�2ūy + ūy
4 − p̄ − ūy

2 + 6p̄ūy
2 + 1.5p̄2 − 2ūy

3 − 6p̄ūy� .

�51�

Note that p̄= p /�c̃2, while ūx and ūy are the dimensionless
forms of ux and uy.

With the above modifications, we can prove that the equi-
librium density distribution function given by Eqs. �50� and
�51� can satisfy Eq. �3� completely �in the 2D case�. How-
ever, if we still follow the approach proposed in Ref. �22� to
construct the equilibrium total energy distribution function, it
will make the equilibrium total energy distribution function
very complicated and the following equation will be ob-
tained �compared with Eq. �31� in Ref. �22��:

�
�

e�ie�jh�
eq = ��E + 2p�uiuj + pE�ij

=
1

2

���b + 4�RT + �u2�uiuj

+ ��bR2T2 + u2RT��ij� . �52�

By comparing Eq. �52� with Eq. �41c�, it can be found
that Eq. �52� has a difference from Eq. �41c�. As a result, the
macroscopic energy equation at the Navier-Stokes level will
become

�

�t
��E� + � · ���E + p�u� = � · �� � T� + � · �u · ���

− � · ��hRT � p� , �53�

where � now is given by �=�hcvp.
In order to overcome these drawbacks, we propose a

simple and general method to determine the equilibrium total
energy distribution function as follows �see Appendix C for
details�:

h�
eq = �E + �e� − u� · u�f�

eq + ��

p

c̃2RT , �54�

where �� can be obtained by solving Eq. �41� and �0=0,
�1,2,3,4=−1/3, �5,6,7,8=1/4, and �9,10,11,12=1/12 are cho-
sen in the present work. By using Eq. �54�, the equilibrium
total energy distribution function which satisfies Eq. �41� can
be very easily derived from its corresponding equilibrium
density distribution function; thus, it is not necessary to de-
sign a very complicated one. Finally, Eqs. �1�, �40�, �50�,
�51�, and �54� constitute model II, which can be used to
simulate high-Mach-number flows.

III. NUMERICAL FORMULATION

A. Time discretization

To solve Eqs. �1� and �40� numerically, we adopt IMEX
Runge-Kutta schemes �29–31� which consist of an implicit
time discretization for the relaxation term and an explicit one
for the other terms. This is because with the high perfor-
mance of the IMEX Runge-Kutta schemes, we can choose a
moderate Courant-Friedriche-Lewy �CFL� number and the
accuracy in time can be improved.

To advance the distribution function f� from time t to t
+�t by the IMEX Runge-Kutta schemes, the following com-
putations are conducted:

f�
�m� = f�

t − �t�
n=1

m−1

ãmn�e� · �f�
�n�� + �t�

n=1

m

amn

f�
eq�n� − f�

�n�

� f
�n� ,

�55�

f�
t+�t = f�

t − �t�
m=1

l

w̃m�e� · �f�
�m�� + �t�

m=1

l

wm

f�
eq�m� − f�

�m�

� f
�m� ,

�56�

where f�
�m�, f�

eq�m�, � f
�m�, and l are the mth stage density distri-

bution function, local equilibrium distribution function, re-
laxation time, and total stage number, respectively. The two
l� l matrices ã= �ãmn� �ãmn=0 for n�m� and a= �amn� �amn

=0 for n�m� and the two vectors w̃= �w̃1 , . . . , w̃l�T and w
= �w1 , . . . ,wl�T characterize the IMEX Runge-Kutta schemes.
Equations �55� and �56� are, respectively, the implicit and
explicit parts of the schemes. Similarly, the following equa-
tions can be obtained for h�:

h�
�m� = h�

t − �t�
n=1

m−1

ãmn�e� · �h�
�n�� + �t�

n=1

m

amn

h�
eq�n� − h�

�n�

�h
�n�

− �t�
n=1

m

amn�e� · u�n��
f�

eq�n� − f�
�n�

�hf
�n� , �57�

h�
t+�t = h�

t − �t�
m=1

l

w̃m�e� · �h�
�m�� + �t�

m=1

l

wm

h�
eq�m� − h�

�m�

�h
�m�

− �t�
m=1

l

wm�e� · u�m��
f�

eq�m� − f�
�m�

�hf
�m� . �58�
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For the implicit of Eq. �55�, it is natural to adopt diago-
nally implicit Runge-Kutta schemes for the relaxation term
�29�. This will be an arduous procedure because not only f�

�m�

but also f�
eq�m� are needed to be fixed in iteration. Fortunately,

the characteristic of the collision invariants of f�, �

= �1,e��T, brings us a simple trick to update f�
�m� without

iteration. For f�
�m�, we rewrite Eq. �55� as

�
�

f�
�m�� = �

�

f�
t � − �t�

n=1

m−1

ãmn��
�

�e� · �f�
�n���	

+ �t�
n=1

m
amn

� f
�n� ��

�

�f�
eq�n� − f�

�n���	 , �59�

and noting that ����f�
eq�n�− f�

�n����=0, we can obtain

�
�

f�
�m�� = �

�

f�
t � − �t�

n=1

m−1

ãmn��
�

�e� · �f�
�n���	 . �60�

Similarly, for h�
�m�, we have

�
�

h�
�m� = �

�

h�
t − �t�

n=1

m−1

ãmn��
�

�e� · �h�
�n��	 . �61�

Equations �60� and �61� mean the mth-stage macroscopic
variables ���m� ,u�m� ,T�m� , p�m�� can be calculated explicitly
from the previous stages. With these stage variables, we can
update the corresponding equilibrium distribution functions
and the relaxation times. As a result, f�

�m� and h�
�m� can be

explicitly given by

f�
�m� =

f�
t − �t�

n=1

m−1

ãmn�e� · �f�
�n�� + �t�

n=1

m−1

amn

f�
eq�n� − f�

�n�

� f
�n� +

�t

� f
�m�ammf�

eq�m�

1 +
�t

� f
�m�amm

, �62�

h�
�m� =

h�
t − �t�

n=1

m−1

ãmn�e� · �h�
�n�� − �t�

n=1

m

amn�e� · u�n��
f�

eq�n� − f�
�n�

�hf
�n� + �t�

n=1

m−1

amn

h�
eq�n� − h�

�n�

�h
�n� +

�t

�h
�m�ammh�

eq�m�

1 +
�t

�h
�m�amm

. �63�

In summary, Eqs. �56� and �62� can be regarded as the gov-
erning equations of the IMEX Runge-Kutta schemes for the
density distribution function, while Eqs. �58� and �63� are the
governing equations for the total energy distribution func-
tion. Note that implicitness is completely eliminated, al-
though the IMEX scheme is used.

It is required that, to enhance the computational accuracy,
the coefficients ãmn, amn, w̃m, and wm should be determined
in order. The coefficients of the second-order and third-order
IMEX Runge-Kutta schemes �29,30� are given in Appendix
D.

B. Space discretization

In this work, the fifth-order weighted essentially nonoscil-
latory �WENO� scheme �30,32� and the total variation dimin-
ishing �TVD� scheme �22� are adopted to capture the discon-
tinuities in the compressible flows. The WENO scheme is an
improvement on the essentially nonoscillatory �ENO�
scheme, and it uses a convex combination of all candidate
stencils instead of just one as in the original ENO scheme. A
high-resolution scheme of space discretization is necessary
to capture the discontinuities and shock waves well. For the
2D flows, in consideration of the x component of the con-

vection term e� ·�f� in Eqs. �56� and �62�, we give the de-
tails of this scheme:

��e�xf��
�x

=
1

�x
�F��,I+1/2,J − F��,I−1/2,J� , �64�

where e�x is the x component of e�; F��,I+1/2,J is the numerical
flux at the interface of xI+�x /2 �I and J are node indexes�,
and it is defined as

F��,I+1/2,J = �1F��,I+1/2,J
1 + �2F��,I+1/2,J

2 + �1F��,I+1/2,J
3 . �65�

Under the condition e�x�0, three third-order fluxes on three
different stencils are given by

F��,I+1/2,J
1 =

1

3
F�,I−2,J −

7

6
F�,I−1,J +

11

6
F�,I,J, �66a�

F��,I+1/2,J
2 = −

1

6
F�,I−1,J +

5

6
F�,I,J +

1

3
F�,I+1,J, �66b�

F��,I+1/2,J
3 =

1

3
F�,I,J +

5

6
F�,I+1,J −

1

6
F�,I+2,J, �66c�

where F�,I,J=e�xf�,I,J.
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The weighting factors �q in Eq. �65� are given by

�q =
�̃q

�̃1 + �̃2 + �̃3

, �̃q =
�q

�10−6 + �q�2 , �67�

with �1=1/10, �2=3/5, and �3=3/10. The small value 10−6

is added to the denominator to avoid dividing by zero. The
coefficients �q in Eq. �67� are the smoothness indicators and
can be obtained by

�1 =
13

12
�F�,I−2,J − 2F�,I−1,J + F�,I,J�2

+
1

4
�F�,I−2,J − 4F�,I−1,J + 3F�,I,J�2, �68a�

�2 =
13

12
�F�,I−1,J − 2F�,I,J + F�,I+1,J�2 +

1

4
�F�,I−1,J − F�,I+1,J�2,

�68b�

�3 =
13

12
�F�,I,J − 2F�,I+1,J + F�,I+2,J�2 +

1

4
�3F�,I,J − 4F�,I+1,J

+ F�,I+2,J�2. �68c�

Similarly, under the condition e�x�0, a mirror image pro-
cedure �with respect to I+1/2� of the procedure from Eqs.
�65�–�68� can be carried out. For 2D problems, these scheme
should be applied in both the x and y directions.

Finally, it should be pointed out that the Euler and
second-upwind-difference schemes can also be used when
the flows do not have shock waves or discontinuities, and the
distribution functions of next step are calculated by

f�
t+�t = f�

t − �t�e� · �f�
t � + �t

f�
eq,t − f�

t

� f
t , �69�

h�
t+�t = h�

t − �t�e� · �h�
t � + �t

h�
eq,t − h�

t

�h
t − �t�e� · ut�

f�
eq,t − f�

t

�hf
t ,

�70�

where �f�
t and �h�

t are calculated by using the second up-
wind difference. Note that the Euler scheme only has first-
order accuracy in time.

IV. NUMERICAL TESTS

In Sec. II, we have developed a coupled DDF lattice Bolt-
zmann method with a flexible specific-heat ratio and Prandtl
number for the compressible NS equations, and two 2D
coupled DDF models have also been designed there. In this
section, as preliminary tests, numerical simulations are per-
formed for the Riemann problem, the double-Mach-
reflection problem, and the Couette flow to validate these
models. The reference density �0 and the reference tempera-
ture T0 are used in simulations, and the reference velocity
and the reference pressure are defined as u0=RT0, p0
=�0RT0. The characteristic temperature Tc is often set to a
value which is a little bit larger than the maximum stagnation

temperature in the whole flow field, Tc�max�T*� where T*

=T�1+ �
−1�Ma2 /2�.

A. Riemann problem

The flow of the Riemann problem includes a shock wave,
a contact surface, and an expansion wave; hence, it makes a
wonderful model problem on which to study the perfor-
mance of the numerical schemes in simulation of compress-
ible flows. Two different cases are considered in this study.

Case 1. Sod shock-tube with the initial condition as fol-
lows:

��/�0,ux/u0,p/p0� = �1,0,1�, 0 � x/L0 � 1/2,

��/�0,ux/u0,p/p0� = �0.125,0,0.1�, 1/2 � x/L0 � 1.

Case 2. Strong shock wave with the initial condition

��/�0,ux/u0,p/p0� = �1,0,1000�, 0 � x/L0 � 1/2,

��/�0,ux/u0,p/p0� = �1,0,0.01�, 1/2 � x/L0 � 1.

Here L0 is the reference length. In particular, for �0
=1.165 kg/m3, R=287 J / �kg K�, T0=303 K, �=1.86
�10−5 kg/ �m s� �air under normal condition�, and L0=2 m,
the mesh is specified by setting �x=�y, and Nx�Ny =400
�5, where Nx and Ny are the lattice numbers along the x and
y directions, respectively. In the x direction, f�= f�

eq is set and
the periodic boundary condition is imposed in the y direc-
tion. The third-order IMEX Runge-Kutta scheme and the
WENO scheme are used in the two cases. The characteristic
time of the system is defined as t0=L0 /u0 and the specific-
heat ratio is set to be 1.4 �air� with b=5 and the Prandtl
number is set to be 0.71.

The profiles of the velocity, temperature, density, and
pressure at t=0.1644t0 for the Sod shock tube obtained from
the simulations are presented in Figs. 2 and 3, where the
theoretical solutions are represented with solid lines for com-
parison. In this case, we set Tc=2T0 and �t
=30 000 � / ��0RT0� with CFL=0.92. The numerical results
are found to be in excellent agreement with the theoretical
ones for both models I and II.

The strong shock-wave problem, which has an extremely
large pressure ratio, 100 000, is a very challenging problem
for numerical methods. For this test, we set Tc=1000T0 and
�t=1000 � / ��0RT0�. The profiles of the velocity, tempera-
ture, density, and pressure at t=0.012t0 are shown in Figs. 4
and 5. To sum up, the numerical results are well consistent
with the theoretical results. However, there are some reason-
able and noticeable deviations in density, velocity, and pres-
sure profiles for both models I and II, and note that the re-
sults from model II are a little better than those from model
I, which can be accepted considering the maximum Mach
number is about 1.9.

B. Double Mach reflection

The double-Mach-reflection problem has been used exten-
sively as a test problem for comparing the performance of
various numerical methods on problems involving strong
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shocks. It is an unsteady shock reflection problem. A planar
shock is incident on an oblique surface, with the surface at a
30° angle to the direction of propagation of the shock �Fig.
6�. The fluid in front of the shock has zero velocity, and the
shock Mach number is equal to 10 �22,26,38,39�.

In this test, the computational domain is a rectangle of
length 3 and height 1. This domain is divided into a 360
�140 uniform mesh. The reflecting wall lies along the bot-
tom of the domain, beginning at x=1/6. The shock makes a
60° angle with the x axis and extends to the top of the do-
main at y=1. The short region from x=0 to x=1/6 along the
bottom boundary at y=0 is always assigned values for the
initial post-shock flow. This boundary condition forces the
reflected shock to be attached to the reflecting wall. The
left-hand boundary is also assigned values for the initial
post-shock flow, and at the right-hand boundary, at x=3, the
extrapolation technique is applied. The values along the top
boundary are set to describe the exact motion of the initial
Mach 10 shock; it means that this test uses a time-dependent
physical boundary condition at the top boundary.

In the computation, we set b=5, Pr=0.71, Tc=85T0, and
�t=4000� / ��0RT0� with CFL=0.56. The second-order
IMEX Runge-Kutta scheme and the TVD scheme are used in

this test. The density and pressure contours at t=860�t are
shown in Fig. 7. The distance between points A and B �see
Fig. 6� is given by �AB�=2� �10u0�860�t� /3�2.15.
Complex features, such as oblique shocks and triple points,
are well captured. The results agree very well with those
obtained by using the upwind method �39� and the adaptive
LBM at the Navier-Stokes level �26�.

C. Couette flow

Couette flow is a classical heat-transfer problem which
can provide a good test of a new lattice Boltzmann model to
describe viscous heat dissipation. Consider a viscous fluid
flow between two infinite parallel flat plates, separated by a
distance of H. The top plate at temperature T1 moves at
speed U, and the bottom plate at temperature T0 is stationary.
In a steady state, the temperature profiles satisfy the follow-
ing relations when the variation of the viscosity and thermal
conductivity is neglected:

T1 = T0: T − T0 = Pr
U2

2cp

y

H
�1 −

y

H
� , �71�
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FIG. 2. Simulation of the Sod shock tube by mode I, comparisons between numerical and theoretical solutions of the Sod shock tube. �a�
Density, �b� velocity, �c� pressure, and �d� temperature.
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T1 � T0:
T − T0

T1 − T0
=

y

H
+

PrEc

2

y

H
�1 −

y

H
� , �72�

where y is the distance from the bottom boundary, Pr
=�cp /� is the Prandtl number, and Ec=U2 /cp�T1−T0� is the
Eckert number.

As there is no shock wave or discontinuity in the Couette
flow, Eqs. �69� and �70� are used in simulations. Moreover,
in this test, the characteristic temperature Tc can be set to be
a value which is smaller than the maximum stagnation tem-
perature to obtain a larger �t, as long as numerical stability
and accuracy are ensured. In the computation, a mesh Nx
�Ny =40�40 with �x=�y is used for all simulations; a
periodic boundary condition is applied to the inlet and outlet,
and the nonequilibrium extrapolation method �37� is applied
to the two plates.

The following numerical results are obtained from model
I with Tc=T0 unless otherwise mentioned. Dimensionless ve-
locity profiles at various time steps for T1=T0, U=0.5u0, 

=1.4, and Pr=2 are shown in Fig. 8. The numerical results
exactly agree with the following analytical solution:

ux

U
=

y

H
+

2

�
�
n=1

� � �− 1�n

n
exp�− n2�2 �t

�H2�sin�n�y

H
�	 ,

�73�

although Eqs. �69� and �70� only have first-order accuracy in
time.

For the steady Couette flow, Fig. 9 shows dimensionless
temperature profiles for T1=T0, U=u0, Pr=2, and 
=5/3,
7 /5, and 9/7. Figure 10 shows the results for T1=T0, U
=u0, 
=7/5, and Pr=1, 2, and 3, and analytical solutions are
also presented for comparison. As shown, the numerical re-
sults agree very well with the analytical solutions.

Furthermore, we also conduct a simulation to measure the
temperature profiles for T1= �1+0.05�T0, 
=7/5, Pr=3.5,
and U=0.5u0, 1.0u0, and 1.5u0. Figure 11 shows that our
results obtained from model I are in excellent agreement
with the analytical ones, even when the flow is supersonic.
However, for high speed flows with Ma�2, which are often
beyond the ability of model I, we suggest using model II.

Simulations of the Couette flow by model II are carried
out for T1=T0, Pr=2, 
=7/5, and U=5u0, 7u0, and 10u0
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FIG. 3. Simulation of the Sod shock tube by mode II, comparisons between numerical and theoretical solutions of the Sod shock tube.
�a� Density, �b� velocity, �c� pressure, and �d� temperature.
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�Ma�8.45�. Tc is set to be 20T0, and the results are pre-
sented in Fig. 12. As can be seen there, high-speed viscous
flows can be well simulated by model II.

V. CONCLUSION

In this paper, we have developed a coupled DDF lattice
Boltzmann method for compressible NS equations. In the
method, the compressible continuity and momentum equa-
tions are recovered by a density distribution function based
on a multispeed lattice, while the compressible energy equa-
tion is recovered by an energy distribution function. The cou-
pling between the two distribution functions is established by
using the thermal equation of state to make sure that the
momentum and energy transports are coupled. Different
from the existing lattice Boltzmann methods for compress-
ible NS equations, the proposed method can easily make
both the specific-heat ratio and the Prandtl number arbitrary.
Moreover, in order to obtain high accuracy in time, a re-
cently developed numerical technique for stiff problems, the
so-called IMEX Runge-Kutta scheme, has been introduced
to solve the discrete Boltzmann equations in the coupled

DDF method. Constraints to recover the compressible NS
equations also have been presented for the equilibrium dis-
tribution functions in this paper. In particular, two coupled
DDF models have been designed: one is based on the con-
ventional LBM in which the truncated Maxwellian equilib-
rium distribution function is used, and the other is based on a
circular function and can be used for high-Mach-number
flows. The models together with the method are well vali-
dated by the numerical simulations of the Riemann problem,
the double-Mach-reflection problem, and the Couette flow
with a range of specific-heat ratios and Prandtl numbers. The
extension of the present method to three-dimensional space
is under way.
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APPENDIX A: CHAPMAN-ENSKOG ANALYSIS OF THE
EVOLUTION EQUATION FOR THE INTERNAL

ENERGY DISTRIBUTION FUNCTION

We first expand the internal energy distribution function
as

g� = g�
eq + Kg�

�1� + K2g�
�2� + ¯ . �A1�

g�
�n� is constrained by

�
�

g�
�n� = 0, n = 1,2, . . . . �A2�

Substituting Eqs. �4a�–�4c� and Eq. �A1� into Eq. �34�, we
can obtain the following equations:

�g�
eq

�t1
+ �e� · �1�g�

eq = −
g�

�1�

�g
− f�

eqq�1, �A3�

�g�
eq

�t2
+ � �

�t1
+ �e� · �1�	g�

�1� = −
g�

�2�

�g
− f�

�1�q�1 − f�
eqq�2,

�A4�

where q�1 and q�2 are given by, respectively,

q�1 = �e� − u� · � �u

�t1
+ �u · �1�u	 + �e� − u��e� − u�:�1u ,

�A5�

FIG. 6. Configuration of the double-Mach-reflection
problem.
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FIG. 5. Simulation of a strong shock wave by mode II, comparisons between numerical and theoretical solutions of the Sod shock tube.
�a� Density, �b� velocity, �c� pressure, and �d� temperature.
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q�2 = �e� − u� ·
�u

�t2
. �A6�

Taking the summation of Eqs. �A3� and �A4� over velocity
space, respectively, we have

�

�t1
��cvT� + �1 · ��cvTu� = − p�1 · u , �A7�

�

�t2
��cvT� + �

�

�e� · �1�g�
�1� = − �

�

f�
�1�q�1 − �

�

f�
eqq�2,

�A8�

where cv=bR /2 is the specific heat at constant volume. From
Eqs. �3a� and �3b�, we can obtain

�
�

f�
eqq�2 = 0. �A9�

From Eq. �5�, we have

�
�

f�
�1��e� − u� · � �u

�t1
+ �u · �1�u	 = 0, �A10�

�
�

f�
�1��e� − u��e� − u�:�1u = �

�

f�
�1�e�e�:�1u .

�A11�

Then the following equation can be obtained:

�
�

f�
�1�q�1 = �

�

f�
�1�e�e�:�1u . �A12�

By using Eq. �A7� and noting that p=�RT for an ideal gas,
we can obtain

�p

�t1
= − �1 · �pu� −

2

b
p�1 · u . �A13�

Then the following equation can be obtained �compared with
Eqs. �14�–�18��:
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FIG. 7. Simulation of the double-Mach-reflection �Ma=10�
problem by mode II, density �a� and pressure �b� contours.
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�
�

e�ie�j f�
�1� = − � fp� �ui

�r1j
+

�uj

�r1i
−

2

b

�uk

�r1k
�ij� . �A14�

From Eq. �A3�, we have

�
�

�e� · �1�g�
�1� = − �g�

�

�

�r1j
� �

�t1
�e�jg�

eq� +
�

�r1i
�e�ie�jg�

eq�

+ f�
eqe�jq�1	 . �A15�

By using Eqs. �3b�–�3d�, we can obtain

�
�

f�
eqe�j�e� − u� · � �u

�t1
+ �u · �1…u	 = p� �uj

�t1
+ ui

�uj

�r1i
� ,

�A16�

�
�

f�
eqe�j�e� − u��e� − u�:�1u = puj

�uk

�r1k
. �A17�

With these results, we can obtain

�
�

f�
eqe�jq�1 = p� �uj

�t1
+ ui

�uj

�r1i
� + puj

�uk

�r1k
. �A18�

Combining Eq. �10� with Eq. �11� leads to

�uj

�t1
= − ui

�uj

�r1i
−

1

�

�p

�r1j
. �A19�

From Eq. �A19� and noting that p=�RT, we have

�
�

f�
eqe�jq�1 = − RT

�p

�r1j
+ puj

�uk

�r1k
. �A20�

Combining Eqs. �35b�, �A7�, and �A19�, we have

�

�t1
��

�

e�jg�
eq� = − uj

�

�r1i
��

b

2
RTui� − puj

�uk

�r1k
− �

b

2
RTui

�uj

�r1i

−
b

2
RT

�p

�r1j
. �A21�

From Eq. �35c�, we can obtain

�

�r1i
��

�

e�ie�jg�
eq� = uiuj

�

�r1i
��

b

2
RT� + �

b

2
RTuj

�ui

�r1i

+ �
b

2
RTui

�uj

�r1i
+ �b + 2

2
�RT

�p

�r1j

+ �b + 2

2
�Rp

�T

�r1j
. �A22�

Substituting Eqs. �A20�–�A22� into Eq. �A15�, we can obtain

�
�

�e� · �1�g�
�1� = − �g

�

�r1j
��b + 2

2
�Rp

�T

�r1j
	 . �A23�

Combining Eqs. �A9�, �A12�, and �A23�, we can rewrite Eq.
�A8� as

�

�t2
��	� = �g

�

�r1j
��b + 2

2
�Rp

�T

�r1j
	 + �

�

f�
�1�e�e�:�1u .

�A24�

Finally, Combining Eqs. �A7� and �A24� together with �t
=K�t1

+K2�t2
, we can obtain the internal energy conservation

equation

�

�t
��cvT� + � · ��cvTu� = � · �� � T� + ��:�u − p � · u ,

�A25�

where �=�g�cv+R�p is the thermal conductivity and �� is
given by

�� = ���u + ��u�T −
2

D
�� · u�I	 + �B�� · u�I ,

�A26�

where �=� fp is the dynamic viscosity, �B=2�1/D
−1/b�� fp is the bulk viscosity, and I is the unit tensor.

APPENDIX B: CHAPMAN-ENSKOG ANALYSIS OF THE
EVOLUTION EQUATION FOR THE TOTAL ENERGY

DISTRIBUTION FUNCTION

Similarly, we expand the total energy distribution function
as

h� = h�
eq + Kh�

�1� + K2h�
�2� + ¯ . �B1�

Combining Eq. �41a� with Eq. �42�, we can obtain

�
�

h�
�n� = 0, n = 1,2, . . . . �B2�

Substituting Eqs. �4a�–�4c� and Eq. �B1� into Eq. �40�, we
can obtain a series of equations in terms of the order of K:

K1:
�h�

eq

�t1
+ �e� · �1�h�

eq = −
h�

�1�

�h
+ �e� · u�

f�
�1�

�hf
, �B3�

K2:
�h�

eq

�t2
+ � �

�t1
+ �e� · �1�	h�

�1� = −
h�

�2�

�h
+ �e� · u�

f�
�2�

�hf
.

�B4�

Taking the summation of Eqs. �B3� and �B4� over velocity
space, respectively, we have

�

�t1
��E� + �1 · ���E + p�u� = 0, �B5�

�

�t2
��E� + �

�

�e� · �1�h�
�1� = 0. �B6�

Multiplying Eq. �B3� by e�j and then taking the summation
over velocity space, we have
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�

�t1
��

�

e�jh�
eq� +

�

�r1i
��

�

e�ie�jh�
eq�

= −
1

�h
�
�

e�jh�
�1� +

1

�hf
ui�

�

e�ie�j f�
�1�. �B7�

Using Eqs. �41b� and �41c�, we have

�
�

e�jh�
�1� = − �h� �

�t1
���E + p�uj� +

�

�r1i
���E + 2p�uiuj

+ p�E + RT��ij�� +
�h

�hf
ui�

�

e�ie�j f�
�1�. �B8�

Combining Eq. �10� with Eq. �11� leads to

�uj

�t1
= − ui

�uj

�r1i
−

1

�

�p

�r1j
. �B9�

From Eqs. �B5� and �B9�, we can get

�

�t1
��Euj� = − �Eui

�uj

�r1i
− E

�p

�r1j
− uj

�

�r1i
���E + p�ui� .

�B10�

In order to derive the expression for ��puj� /�t1, we rewrite
the left-hand side of Eq. �B5� as follows:

�

�t1
�1

2
�u2 + �

b

2
RT� +

�

�r1k
�1

2
�u2uk + �

b

2
RTuk + puk�

= uj
�

�t1
��uj� +

�

�t1
��

b

2
RT� + uj

�

�r1k
��ukuj�

+
�

�r1k
��

b

2
RTuk� + p

�uk

�r1k
+ uk

�p

�rk

= uj� �

�t1
��uj� +

�

�r1k
��ukuj� +

�p

�r1j
	 +

�

�t1
��

b

2
RT�

+
�

�r1k
��

b

2
RTuk� + p

�uk

�r1k
.

The relation uk�p /�r1k=uj�p /�r1j is used in the above deri-
vation. Then, using Eq. �11�, we can obtain

�p

�t1
= −

�

�r1k
�puk� −

2

b
p

�uk

�r1k
. �B11�

Combining Eqs. �B9� with �B11�, we have

�

�t1
�puj� = − pui

�uj

�r1i
− RT

�p

�r1j
− uj

�

�r1k
�puk� − �
 − 1�puj

�uk

�r1k
.

�B12�

Then, substituting Eqs. �B10� and �B12� into Eq. �B8�, we
have

�
�

e�jh�
�1� = − �h�pui

�ui

�r1j
+ pui

�uj

�r1i
+ �cv + R�p

�T

�r1j

− �
 − 1�pui�ij
�uk

�r1k
	 +

�h

�hf
ui�

�

e�ie�j f�
�1�.

�B13�

From Eq. �B11�, ��e�ie�j f�
�1� now is given by �compared

with Eqs. �14�–�18��

�
�

e�ie�j f�
�1� = − � fp� �ui

�r1j
+

�uj

�r1i
− �
 − 1�

�uk

�r1k
�ij� .

�B14�

Thus, we can rewrite Eq. �B13� as

�
�

e�jh�
�1� = − � � f�h

�hf
+ �h��pui

�ui

�r1j
+ pui

�uj

�r1i

− �
 − 1�pui�ij
�uk

�r1k
	 − �h�cv + R�p

�T

�r1j
.

�B15�

Finally, combining Eqs. �B5�, �B6�, and �B15� and noting
that � f�h /�hf +�h=� f, we can obtain the compressible energy
equation
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FIG. 11. Dimensionless temperature profiles in steady Couette
flow for T1= �1+0.05�T0, Pr=3.5, 
=7/5, and U=0.5u0, u0, and
1.5u0.
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FIG. 12. Simulation of steady Couette flow by mode II, dimen-
sionless temperature profiles for T1=T0, Pr=2, 
=7/5, and U
=5u0, 7u0, and 10u0.

COUPLED DOUBLE-DISTRIBUTION-FUNCTION LATTICE… PHYSICAL REVIEW E 76, 056705 �2007�

056705-17



�

�t
��E� + � · ���E + p�u� = � · �� � T� + � · �u · ��� , �B16�

where �=�h�cv+R�p is the thermal conductivity and �� is given by Eq. �A26�.

APPENDIX C: THE CONSTRAINTS FOR ��

From Eq. �54� and using Eq. �3�, we have

�
�

h�
eq = �

�
�Ef�

eq + �e� − u� · uf�
eq + ��

p

c̃2RT�
= �E + �

�

�e�j − uj�ujf�
eq + �

�

��

p

c̃2RT

= �E + 0 + �
�

��

p

c̃2RT ,

�
�

e�ih�
eq = �

�

e�i�Ef�
eq + �e� − u� · uf�

eq + ��

p

c̃2RT� = E�
�

e�i f�
eq + �

�

e�i�e�j − uj�ujf�
eq + �

�

e�i��

p

c̃2RT = �Eui

+ �
�

e�ie�jujf�
eq − �

�

e�iuj
2f�

eq + �
�

e�i��

p

c̃2RT = �Eui + uj��uiuj + p�ij� − uj
2�ui + �

�

e�i��

p

c̃2RT = �Eui + pui

+ �
�

e�i��

p

c̃2RT ,

�
�

e�ie�jh�
eq = �

�

e�ie�j�Ef�
eq + �e� − u� · uf�

eq + ��

p

c̃2RT� = E�
�

e�ie�j f�
eq + �

�

e�ie�j�e�k − uk�ukf�
eq + �

�

e�ie�j��

p

c̃2RT

= �Euiuj + pE�ij + �
�

e�ie�je�kukf�
eq − �

�

e�ie�juk
2f�

eq + �
�

e�ie�j��

p

c̃2RT = �Euiuj + pE�ij + uk��uiujuk + p�uk�ij

+ uj�ik + ui� jk�� − ��uiuj + p�ij�uk
2 + �

�

e�ie�j��

p

c̃2RT = �Euiuj + pE�ij + 2puiuj + �
�

e�ie�j��

p

c̃2RT .

Finally, comparing the above equations with Eq. �41�, we can obtain the constraints for ��:

�
�

��

p

c̃2RT = 0, �C1a�

�
�

e�i��

p

c̃2RT = 0, �C1b�

�
�

e�ie�j��

p

c̃2RT = pRT�ij . �C1c�

APPENDIX D: COEFFICIENTS OF THE IMEX RUNGE-KUTTA SCHEMES

The IMEX Runge-Kutta schemes can be represented by a double Butcher’s tableau

�a

T�w

a

Tw

second-order scheme
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0 0 0
0 0 0
0 1 0

0 1 2 1 2

1 2 0 0
1 2 1 2 0
0 1 2 1 2

−

0 1 2 1 2

third-order scheme

0 0 0 0
0 0 0 0
0 1 0 0
0 1 4 1 4 0

0 1 6 1 6 2 3

0 0 0
0 0

0 1 0
1 2

χ
χ χ

χ χ
χ ζ β ζ χ χ

−
−

− − −

0 1 6 1 6 2 3

� = 0.24169426078821, � = 0.06042356519705, � = 0.12915286960590.
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